b^2-18=4-2b^2

Simple and best practice solution for b^2-18=4-2b^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b^2-18=4-2b^2 equation:



b^2-18=4-2b^2
We move all terms to the left:
b^2-18-(4-2b^2)=0
We get rid of parentheses
b^2+2b^2-4-18=0
We add all the numbers together, and all the variables
3b^2-22=0
a = 3; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·3·(-22)
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{66}}{2*3}=\frac{0-2\sqrt{66}}{6} =-\frac{2\sqrt{66}}{6} =-\frac{\sqrt{66}}{3} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{66}}{2*3}=\frac{0+2\sqrt{66}}{6} =\frac{2\sqrt{66}}{6} =\frac{\sqrt{66}}{3} $

See similar equations:

| 3(x+1)=14-2x | | 2y×3/5=18 | | -5x+16=49 | | P=(2;3)yQ=(4;-2) | | 7x+8=-3x-4 | | X^2=4z+8 | | 2(x-4)-3=6x-4(2+x) | | 90+25+16x+1=180 | | 2/9=8/kk= | | 2/9=8/k | | x+74=x+50 | | x+17=x+50 | | 2a+7=3a-19 | | 14y-12=5y+15 | | 11p+16=16p-14 | | 11p+16=16p–14 | | 18t=45t^2 | | b+5=3b–9 | | 3b–9=b+5 | | 15(y-4)-2(y-2)=-5(y+6) | | 5z+49=3z-49 | | 5z+49=3z+49 | | 5b=6b-17 | | 18u+2=14u+18 | | 19b=13b+12 | | 12c+5=14c-9 | | 9a+7=13a-5 | | 5x-2+5x-1=30/5 | | 3^(x+1)=6 | | 3^x+1=6 | | (X-2)2(x-1)2=x2 | | (2+3)+4^2x(5−3)= |

Equations solver categories